
Instructions for Machine-to-Machine
Communication

This is the client ID and client secret that will be used to authenticate machine to machine. This should be
kept secure and in a safe place. Do not expose this information to the public.

Client Id: accessMedicarePushServer
Client Secret: ef3684401523269b56c0669a529df6ffa96fd56035fb8c5b4347fc4a7c64374d

Application Domains

Development Domain: access-medicare.zdidesign.com
used only during early development

Test Harness Domain: test.accessmedicareny.com
used for testing new features before going live, can be whatever client chooses

Live Domain: app.accessmedicareny.com
Used for the live application, can be whatever client chooses

If a client secret is compromised, you will need to contact ZDI to generate a new key.
NOTE: These instructions are never included in the online api documentation for security reasons.

Before your code can post or retrieve data from the API, you must receive an access token. The purpose of
this token is for the API to know that the machine is authorized to communicate with the API.
The API always inspects the "Authorization" header of any request and if it is not present or the token is
invalid, access is denied.

An access token should be retrieved at the start of any new software resource and only needs to be
retrieved once. You do not need an access token before each and every call to the API. You should create
the token once at the beginning of your program.

You can get an access token by making a "POST" request to http(s)://domain.com/api/oauth with the
following JSON data:

{
 "client_id":"accessMedicarePushServer",
 "grant_type":"client_credentials",
 "client_secret":"ef3684401523269b56c0669a529df6ffa96fd56035fb8c5b434
7fc4a7c64374d"
}

The API will not automatically try to detect the type of data you are "POST"ing for security reasons. Instead,
you must tell the API what the format of the posted data is by setting the "Content-Type" header:

Content-Type:application/json

Additionally, you must tell the API the format in which you want responses. You do this by setting the
"Accept" Header:

Accept:application/json

The completed request would look similar to:

POST /api/oauth HTTP/1.1
Content-Type: application/json
Accept: application/json
Cookie: PHPSESSID=nq2s8be9itph31rklhab4vqln1
Host: domain.com
Connection: close
User-Agent: Paw/2.2.5 (Macintosh; OS X/10.10.5) GCDHTTPRequest
Content-Length: 164
{
 "client_id":"accessMedicarePushServer",
 "grant_type":"client_credentials",
 "client_secret":"ef3684401523269b56c0669a529df6ffa96fd56035fb8c5b434
7fc4a7c64374d"
}

When you receive a token/response from the server, you should always check the response status code to
see if the request was successful. Check the documentation for the class/object/language that you are using
to inspect the response.

If you receive a response with a status code of 200, the authentication was successful. Included in this
response will be your access token and some additional information. This JSON data will look similar to:

{
 "access_token": "cd8812b9a4cc471d9fcd8cd09881ea81cd79f7f9",
 "expires_in": 2592000,
 "token_type": "Bearer",
 "scope": "pushServer"
}

You should store the access token in a variable so that you can use it for subsequent requests.

You can now make as many machine-to-machine requests to the API as you like.

Other possible response status codes are:
400 - Client Credentials are invalid or invalid grant type supplied
500 - Server Error - should contact ZDI

Tokens automatically come with a lifetime and the lifetime is described in seconds from the response. Upon
inspecting the token response, note a parameter "expires_in". This is how many seconds from now that the
token will expire.

You can opt to store tokens in a database or the like and only generate a new token when the old one
expires. However, for increased security it is recommended that you revoke access tokens after you have
completed your API queries.

You can revoke a token by passing the token as part of the url, as a "DELETE" request to:

 http://domain.com/api/oauth/revoke-token/:token

Where ":token" would be the access token you are looking to revoke.

For all other operations, please see the online api documentation.

